Fresh off its dismantling of net neutrality and its drunken binge of bribing its staff, AT&T (T) has launched two field trials of its AirGig technology, fueling hopes it can gain broader acceptance of its version of the failed broadband over powerline (BPL) technology. The AirGig plan, as AT&T explained in 2016, is to use millimeter-wave radio signals (above 24 GHz) to travel along power lines. Radios on the power lines would regularly refresh the signal as it travels.
Firecetelecom reports that the first trial was with an electricity provider outside the U.S., and the second trial is underway with Georgia Power. Stopping short of revealing a service rollout plan, AT&T will take what it learns from the trials and continue to develop AirGig. Based on its evaluation of the current trials, AT&T will look at expanding more advanced BPL technology trials in other locations. AT&T told Firecetelecom that while “there’s no timeline yet for commercial deployment, we’re encouraged and excited by what we’ve seen so far.”
The service is bullish on AirGig. The telco is touting AirGig’s potential to deliver 1 Gbps speeds via a millimeter-wave signal guided by power lines. Firecetelecom says AT&T’s Ultimate goal with AirGig is to accelerate broadband deployments.
While there have been plenty of BPL failures, AT&T claims AirGig is different. They say it is more efficient than earlier generations of BPL because it runs along, and not within, the medium voltage power lines. The technology differs from earlier BPL technologies, which traveled with the current.
In order to roll out Airgig, AT&T had to develop several new BPL innovations to distribute signals from the power lines to homes and businesses. AT&T labs developed a Radio Distributed Antenna System (RDAS), which uses low-cost plastic antennas, aka mmWave surface wave launchers, along with inductive power devices, which receive power without direct electrical connections (for simplified installation).
The RDAS will reconstruct signals from multi-gigabit mobile and fixed deployments. Those data signals are then transmitted using mmWave over power lines. The mmWave surface wave launchers are inductive power devices that create multi-gigabit signals that travel along or near the medium-voltage wire, not through it.
The data signal uses the existing pole infrastructures mostly line-of-sight wire paths act as a waveguide that channels the signal and improves the transmission quality, according to Mark Evans, a director on AT&T’s AirGig team. A waveguide is a structure (like an electrical wire) that restricts how much waves can expand over distance, thereby minimizing energy loss. AT&T radio technology engineer Peter Wolniansky explained in a demo that electromagnetic physics make it work, “The signal energy clings like a glow to this wire, … It’s bound by Maxwell’s equations to stick to this wire.”
Millimeter waves are radio waves from 24-300 GHz. The benefit of using these high-frequency bands is access to high bandwidth, between 100-800 MHz, which is 20-100x more than today’s common cellular systems.
AT&T plans to put wireless stations periodically along the route to provide the last-mile connections. For that last communication link to a home or business, AT&T will use more conventional wireless equipment. Customers would use 5G CPE equipment to connect to the AirGig data flow. Once the CPE has received the signal, it can use Wi-Fi (802.11ad or 802.11ac) or an LTE femtocell unit to connect to the end users’ smartphones, tablets, laptops, television, autonomous vehicles or other IoT devices. CNet quotes Mark Evans, a director on AT&T’s AirGig team.”We’re aiming to be ready to deploy it commercially in the 2021 timeframe.“
CNET also quotes Gordon Mansfield, AT&T’s vice president of converged access and devices who says they are moving forward. He confirmed that AT&T has contracted with manufacturers to build more refined hardware for a new round of AirGig testing most likely in 2019.
A key part of the AirGig technology for AT&T is that it is easy to install. Antenna modules — AT&T calls them eggs — clamp in pairs on the power line extending each direction from the power pole. The devices can power themselves via inductive power devices without a direct electrical connection. The eggs configure themselves automatically, and the early test showed it takes people 10 minutes to hook up to the network, said AT&T Chief Technology Officer Andre Fuetsch.
rb-
Kudos to AT&T for trying to figure out how to get everybody else to do their work just like Tom Sawyer..
AT&T can use the existing electrical right of way to bypass local municipality requirements, a long-running tactic of AT&T.
AT&T does not want to be in the business of connecting customers. They want to use the electric company’s infrastructure for free because fiber optic cable is expensive to bury underground or string along telephone poles.
AT&T will be using totally free unlicensed spectrum to sell access back to us at a huge profit.
They don’t even want to pay for electricity to run the equipment. They are using inductive power right off the mainline so it is not metered, which means everybody will have to pay.
Related article
Ralph Bach has been in IT long enough to know better and has blogged from his Bach Seat about IT, careers, and anything else that catches his attention since 2005. You can follow him on LinkedIn, Facebook, and Twitter. Email the Bach Seat here.
Despite 













They recommend for text messages, avoiding SMS instead of using encrypted messaging services such as 

